Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19551-19562, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567787

RESUMO

Highly conductive, transparent, and easily available materials are needed in a wide range of devices, such as sensors, solar cells, and touch screens, as alternatives to expensive and unsustainable materials such as indium tin oxide. Herein, electrospinning was employed to develop fibers of PEDOT:PSS/silver nanowire (AgNW) composites on various substrates, including poly(caprolactone) (PCL), cotton fabric, and Kapton. The influence of AgNWs, as well as the applied voltage of electrospinning on the conductivity of fibers, was thoroughly investigated. The developed fibers showed a sheet resistance of 7 Ω/sq, a conductivity of 354 S/cm, and a transmittance value of 77%, providing excellent optoelectrical properties. Further, the effect of bending on the fibers' electrical properties was analyzed. The sheet resistance of fibers on the PCL substrate increased slightly from 7 to 8 Ω/sq, after 1000 bending cycles. Subsequently, as a proof of concept, the nanofibers were evaluated as electrode material in a triboelectric nanogenerator (TENG)-based energy harvester, and they were observed to enhance the performance of the TENG device (78.83 V and 7 µA output voltage and current, respectively), as compared to the same device using copper electrodes. These experiments highlight the untapped potential of conductive electrospun fibers for flexible and transparent electronics.

2.
ACS Appl Mater Interfaces ; 14(39): 44591-44603, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150147

RESUMO

A high-performance textile triboelectric nanogenerator is developed based on the common commercial fabrics silk and polyester (PET). Electrospun nylon 66 nanofibers were used to boost the tribo-positive performance of silk, and a poly(vinylidene difluoride) (PVDF) coating was deployed to increase the tribo-negativity of PET. The modifications confer a very significant boost in performance: output voltage and short-circuit current density increased ∼17 times (5.85 to 100 V) and ∼16 times (1.6 to 24.5 mA/m2), respectively, compared with the Silk/PET baseline. The maximum power density was 280 mW/m2 at a 4 MΩ resistance. The performance boost likely results from enhancing the tribo-positivity (and tribo-negativity) of the contact layers and from increased contact area facilitated by the electrospun nanofibers. Excellent stability and durability were demonstrated: the nylon nanofibers and PVDF coating provide high output, while the silk and PET substrate fabrics confer strength and flexibility. Rapid capacitor charging rates of 0.045 V/s (2 µF), 0.031 V/s (10 µF), and 0.011 V/s (22 µF) were demonstrated. Advantages include high output, a fully textile structure with excellent flexibility, and construction based on cost-effective commercial fabrics. The device is ideal as a power source for wearable electronic devices, and the approach can easily be deployed for other textiles.

3.
Sci Rep ; 10(1): 367, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941969

RESUMO

Ferrous core-shell nanoparticles consisting of a magnetic γ-Fe2O3 multi-nanoparticle core and an outer silica shell have been synthesized and covalently functionalized with Rhodamine B (RhB) fluorescent molecules (γ-Fe2O3/SiO2/RhB NPs). The resulting γ-Fe2O3/SiO2/RhB NPs were integrated with a renewable and naturally-abundant cellulose derivative (i.e. cellulose acetate, CA) that was processed in the form of electrospun fibers to yield multifunctional fluorescent fibrous nanocomposites. The encapsulation of the nanoparticles within the fibers and the covalent anchoring of the RhB fluorophore onto the nanoparticle surfaces prevented the fluorophore's leakage from the fibrous mat, enabling thus stable fluorescence-based operation of the developed materials. These materials were further evaluated as dual fluorescent sensors (i.e. ammonia gas and pH sensors), demonstrating consistent response for very high ammonia concentrations (up to 12000 ppm) and fast and linear response in both alkaline and acidic environments. The superparamagnetic nature of embedded nanoparticles provides means of electrospun fibers morphology control by magnetic field-assisted processes and additional means of electromagnetic-based manipulation making possible their use in a wide range of sensing applications.


Assuntos
Celulose/análogos & derivados , Corantes Fluorescentes , Técnicas de Sonda Molecular , Nanopartículas , Rodaminas , Amônia/análise , Fenômenos Eletromagnéticos , Concentração de Íons de Hidrogênio , Teste de Materiais , Microscopia de Fluorescência , Nanopartículas/química , Nanopartículas/ultraestrutura
4.
Front Chem ; 7: 87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863744

RESUMO

Advances in the technology and processing of flexible optical materials have paved the way toward the integration of semiconductor emitters and polymers into functional light emitting fabrics. Lead halide perovskite nanocrystals appear as highly suitable optical sensitizers for such polymer fiber emitters due to their ease of fabrication, versatile solution-processing and highly efficient, tunable, and narrow emission across the visible spectrum. A beneficial byproduct of the nanocrystal incorporation into the polymer matrix is that it provides a facile and low-cost method to chemically and structurally stabilize the perovskite nanocrystals under ambient conditions. Herein, we demonstrate two types of robust fiber composites based on electrospun hydrophobic poly(methyl methacrylate) (PMMA) or hydrophilic polyvinylpyrrolidone (PVP) fibrous membranes sensitized by green-emitting all-inorganic CsPbBr3 or hybrid organic-inorganic FAPbBr3 nanocrystals. We perform a systematic investigation on the influence of the nanocrystal-polymer relative content on the structural and optical properties of the fiber nanocomposites and we find that within a wide content range, the nanocrystals retain their narrow and high quantum yield emission upon incorporation into the polymer fibers. Quenching of the radiative recombination at the higher/lower bound of the nanocrystal:polymer mass ratio probed is discussed in terms of nanocrystal clustering/ligand desorption due to dilution effects, respectively. The nanocomposite's optical stability over an extended exposure in air and upon immersion in water is also discussed. The studies confirm the demonstration of robust and bright polymer-fiber emitters with promising applications in backlighting for LCD displays and textile-based light emitting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...